

Materiali e Metodi

La campagna di monitoraggio si è svolta nella giornata del 30 Maggio 2022, dalle ore 7 alle ore 13 circa. Le condizioni meteomarine erano caratterizzate da cielo coperto e brezza leggera con provenienza SE (4-6 nodi). In corrispondenza delle imboccature portuali il mare era prevalentemente calmo.

I principali parametri chimico-fisici dell'acqua sub-superficiale (temperatura, salinità, ossigeno disciolto) sono stati rilevati e validati con una sonda multiparametrica (Idronaut Ocean Seven 316). calata direttamente dalle imbarcazioni della SEPG a circa un metro di profondità, in 110 punti distribuiti all'interno dell'area portuale. In 20 di questi punti, scelti in base alla loro collocazione rispetto ai principali apporti di acqua dolce proveniente da terra, sono stati prelevati anche campioni di acqua sub-superficiale per l'analisi dell'azoto ammoniacale, dei coliformi fecali e della clorofilla-a, secondo le metodologie standard UNICHIM.

Nell'allegato 1 e nelle tabelle 1 e 2 si riporta l'ubicazione dei punti nei quali sono stati acquisiti i parametri chimico-fisici tramite sonda. Nelle tabelle 3 e 4 si riporta l'ubicazione dei punti nei quali sono stati prelevati anche campioni di acqua e i parametri analizzati.

Caratteristiche meteo-climatiche del mese di Maggio 2022

Parametri meteorologici, come le precipitazioni, la temperatura atmosferica e l'intensità e la direzione del vento, influenzano direttamente l'idrodinamica dell'area portuale, si riporta quindi l'andamento di tali parametri nel mese indagato.

Le temperature del mese di Maggio sono molto superiori alla media del periodo.

Maggio è stato caratterizzato da precipitazioni inferiori alla media del periodo, per un totale di 6 giorni piovosi. (Fig. 1).

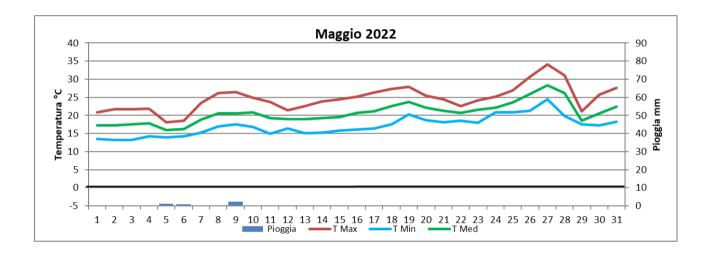


Fig. 1 Andamento delle precipitazioni e della temperatura nel mese di Maggio 2022 (http://www.cartografiarl.regione.liguria.it)

Il regime dei venti, da deboli a forti ha provenienza variabile. I venti di maggiore intensità provengono prevalentemente da NE, questo può aver favorito il ricambio di acqua con il mare aperto, evitando il confinamento dei carichi inquinanti all'interno dell'area portuale grazie al trasporto di acqua superficiale verso le imboccature del porto (Fig.2).

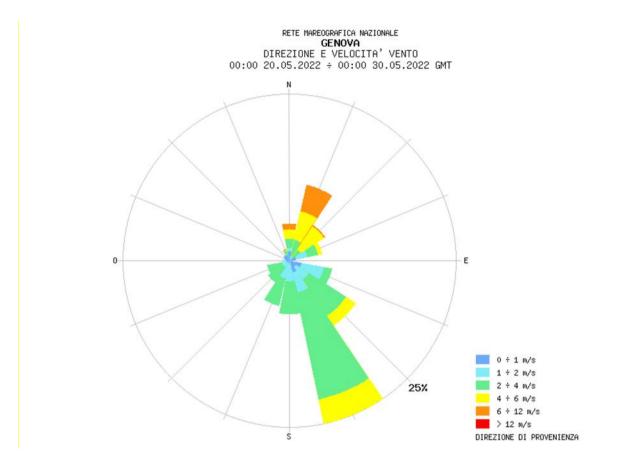


Fig. 2 Venti 20-30 Maggio 2022

Caratteristiche fisiche, chimiche e biologiche delle acque sub-superficiali

Area Portuale compresa tra la foce del Bisagno e la Foce del Polcevera

I valori di temperatura sub-superficiale delle acque hanno una media di 20.81°C. (All.2, Tab.1).

I valori di salinità sono direttamente correlati agli apporti da terra. In tutta la zona la salinità presenta valori con una media 37.841 PSU. I valori minimi sono stati riscontrati all'imboccatura di levante del canale di calma adiacente la pista dell'aeroporto (36.425 PSU). Le salinità sono riportate in All.3, Tab.1.

Per quanto riguarda l'ossigeno disciolto, espresso come percentuale di saturazione, i valori minimi sono stati riscontrati presso ponte Embriaco, con valori di percentuale di saturazione dell'ossigeno intorno al 77%. Valori più elevati sono stati riscontrati nelle restanti zone, con valori superiori all'90% (All.4, Tab.1).

Le concentrazioni di azoto ammoniacale e di coliformi fecali, indici di contaminazione antropica, aumentano in corrispondenza degli apporti da terra dovuti a corsi d'acqua o scarichi di depuratori urbani. Sia per i coliformi fecali si per l'azoto ammoniacale i valori più alti sono stati trovati presso il depuratore in Darsena (5794 UFC/100 ml e 0.21 mg/l). (All.5 e 6, Tab.3).

La biomassa fitoplanctonica, espressa come concentrazione della clorofilla a, presenta un valore medio pari a 0.48 μ g/l. Raggiunge i massimi presso la foce del Polcevera (0.80 μ g/l). I minimi si trovano nella zona di Punta Vagno (0.13 μ g/l). (All.7, Tab.3).

Le acque marine presentano generalmente una notevole stabilità di pH (da 8.0 a 8.3) garantita da un efficiente sistema tampone. Il pH è influenzato da alcuni fattori quali l'attività fotosintetica e i processi di decomposizione del materiale organico. Il valore medio dell'area è di 8.0 con valori minimi nella zona del Porto Antico (7.9). (All.8, Tab.1)

Il Potenziale Red-Ox misura la capacità di un sistema di effettuare ossidazione. Questo parametro è legato alla pressione parziale dell'ossigeno e al pH. Un valore fortemente positivo (> +400 mV) indica condizioni ambientali favorevoli all'ossidazione (presenza di ossigeno) mentre un potenziale basso (< +200 mV) indica una tendenza alla riduzione (carenza di ossigeno). Il valore medio dell'area è di 503.78 mV. I valori minimi si riscontrano nell'area influenzata dalla la foce del Polcevera (464.75 mV). Riteniamo che sia di più facile interpretazione la rappresentazione di tale valore con un grafico di distribuzione dei punti, rispetto a una mappa di distribuzione. (All.9 Grafico 1, Tab.1)

La torbidità indica la presenza di materiale organico e inorganico in sospensione e modifica le proprietà fisiche e chimiche dell'acqua soprattutto a livello di penetrazione della luce con conseguenze sulla produzione primaria. La torbidità può essere sia provocata da cause naturali sia da scarichi derivanti da attività umane. Essa viene espressa in NTU (Unità di Torbidità Nefelometriche). È da segnalare come la torbidità è di difficile misurazione nello strato subsuperficiale a causa delle interferenze dovute alla radiazione solare e alle possibili turbolenze. Il valore medio per l'intera zona è di 1.29 NTU. (All.10, Tab.1)

Nel complesso le zone critiche risultano essere quelle maggiormente interessate da apporti di acqua dolce e scarichi antropici. In particolare in corrispondenza dello scarico dei depuratori in Darsena e davanti alla foce del Polcevera, i parametri indice di contaminazione antropica risultano alterati.

Area Portuale compresa tra Multedo e Prà-Voltri

Nell'area di Multedo e Prà-Voltri i valori di temperatura sub-superficiale delle acque hanno una media pari a 21.40°C. I valori massimi si riscontrano all'imboccatura del bacino di Multedo (22.16°C). (All.2, Tab.2).

In tutta l'area la salinità presenta un valore medio pari a 37.848 PSU. I valori minimi sono stati riscontrati nella zona di mare antistante la pista dell'aeroporto (36.961 PSU). (All.3, Tab.2).

I valori minimi di ossigeno disciolto, espresso come percentuale di saturazione, sono stati riscontrati nella zona di mare antistante la pista dell'aeroporto (94.6%). Nelle restanti zone si trovano valori di saturazione dell'ossigeno maggiori, superiori al 95%. (All.4, Tab.2).

Per i coliformi fecali le concentrazioni più elevate si riscontrano all'interno del bacino di Multedo (24196 UFC/100 ml). Per l'azoto ammoniacale le concentrazioni maggiori si riscontrano nella zona di mare antistante Voltri (1.11 mg/l). (All.5 e 6, Tab.4).

La biomassa fitoplanctonica, espressa come concentrazione della clorofilla a raggiunge i valori massimi alla foce del Chiaravagna (1.42 μ g/l). I valori minimi si hanno nella zona di mare antistante Voltri (0.21 μ g/l). Il valore medio di tutta l'area è pari a 0.65 μ g/l. Le concentrazioni vengono riportate in All.7, Tab.4.

Il pH presenta un valore medio di 8.1 e una distribuzione molto omogenea. (All.8, Tab.2)

Per quanto concerne al potenziale Red-Ox il valore medio dell'area è di 496.83 mV. (All.9 Grafico 2, Tab.2)

Il valore medio di torbidità riscontrato in quest'area è di 1.62 NTU.

Nel complesso la zona più critica risulta essere il bacino di Multedo e la zona antistante la sua imboccatura, sia per gli apporti di acqua dolce e scarichi antropici, che per la limitata circolazione dell'area.

Analisi Sedimenti

Nella stazione di campionamento n.122, in corrispondenza del tratto di mare compreso tra Ponte Caracciolo e Ponte Assereto, come indicato nella mappa della Fig.3, sono stati prelevati alcuni campioni ad una profondità di circa 15 metri, sui quali è stata svolta un'analisi granulometrica ed un'analisi chimico- biologica.

L'analisi sulla granulometria dei campioni ha rilevato una distribuzione principalmente tra sabbia (70.54%) e pelite (28.46%). I risultati sono illustrati nell'allegato rapporto di prova n. 174A/2022 di M3C s.r.l. del 17/03/2022.

L'analisi chimica di metalli, di alcuni idrocarburi e PCB mostra la presenza in misura significativa di alcuni metalli pesanti (Cr, Hg, Ni, Pb, Zn) e di alcuni idrocarburi policiclici aromatici; in particolare:

- concentrazioni al di sopra del limite di cui al D.M. 15/07/2016 n. 173 per Cromo Totale, Mercurio, Nichel, Piombo e Zinco;
- significativa concentrazione di Idrocarburi Policiclici Aromatici (IPA), pari a 1,5 mg/Kg s.s., con prevalenza di Fluorantene e Pirene;
- sia i composti organoclorurati sia i composti organostannici sono presenti in tracce o non rilevati (dato inferiore al limite di rilevabilità del metodo di analisi);
- la somma dei Sommatoria Policlorobifenili (PCB) è al di sopra del valore limite di cui al D.M. 15/07/2016 n. 173;
- relativamente all'analisi biologica, si rileva la presenza di coliformi, streptococchi, clostridi solfito riduttori e salmonella.

I risultati delle analisi sono dettagliati nell'allegato Certificato di campionamento e analisi RT 174A/2022 di M3C s.r.l. del 17/03/2022.

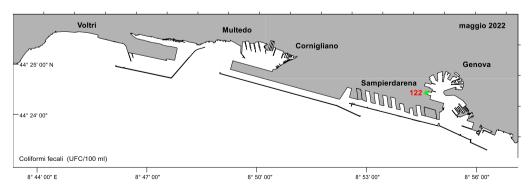


Fig. 3 – Punto di campionamento sedimenti

Dott.ssa Francesca Spotorno

Transessa Sptorno

Tab. 1 - area di campionamento foce Bisagno - foce Polcevera

			Latitudine	Longitudine	Temperatura	Salinità	Ossigeno disciolto		Red-Ox	Torbidità
Stazione	Data	Ora	N	E	(°C)	(PSU)	(%)	рН	(mV)	(NTU)
15	30 maggio 2022	07:17:36	44.404	8.924	20.76	37.904	94.2	8.0	515.07	1.81
14	30 maggio 2022	07:19:29	44.404	8.920	20.74	37.918	95.6	7.9	516.67	1.98
7	30 maggio 2022	07:21:31	44.406	8.918	20.69	37.915	93.0	7.9	514.35	2.77
8	30 maggio 2022	07:24:19	44.409	8.918	21.11	37.914	88.6	7.9	515.92	2.01
13	30 maggio 2022	07:30:51	44.408	8.925	21.31	37.865	77.5	7.9	515.70	2.85
12	30 maggio 2022	07:34:45	44.411	8.925	21.26	37.876	79.2	7.9	516.35	1.89
12	30 maggio 2022	07:38:58	44.410	8.926	20.78	37.872	88.6	7.9	514.83	1.98
10	30 maggio 2022	07:40:36	44.413	8.920	20.38	37.929	94.1	8.0	511.40	2.36
9	30 maggio 2022	07:42:22	44.411	8.919	20.73	37.766	86.3	7.9	510.98	2.09
1	30 maggio 2022	07:44:19	44.411	8.917	20.73	37.763	87.0	7.9	512.20	2.10
2	30 maggio 2022	07:46:53	44.411	8.913	20.12	37.936	95.7	8.0	509.40	3.57
3	30 maggio 2022	07:48:47	44.410	8.914	20.13	37.933	95.2	7.9	511.77	3.39
4	30 maggio 2022	07:50:44	44.409	8.910	20.91	37.892	88.8	8.0	506.05	2.13
5	30 maggio 2022	07:52:24	44.408	8.913	20.82	37.898	89.9	7.9	509.03	2.04
122	30 maggio 2022	07:54:07	44.407	8.911	20.77	37.945	92.1	7.9	514.60	2.01
6	30 maggio 2022	07:56:13	44.406	8.913	20.82	37.923	90.7	8.0	512.40	2.17
121	30 maggio 2022	07:58:12	44.406	8.915	20.82	37.922	91.0	8.0	514.02	2.19
16	30 maggio 2022	08:02:38	44.400	8.920	20.72	37.938	94.7	8.0	510.32	1.75
120	30 maggio 2022	08:05:41	44.398	8.922	20.80	37.919	96.9	8.0	510.28	1.58
17	30 maggio 2022	08:08:24	44.399	8.929	20.72	37.941	96.0	8.0	507.30	1.61
18	30 maggio 2022	08:10:56	44.396	8.927	21.12	37.902	96.1	8.0	507.50	1.56
101bis	30 maggio 2022	08:16:48	44.389	8.939	21.10	37.958	98.7	8.1	506.70	1.34
101	30 maggio 2022	08:18:59	44.391	8.940	21.30	37.840	92.7	8.0	503.25	1.66
103	30 maggio 2022	08:20:24	44.387	8.938	21.66	37.858	95.7	8.1	507.27	1.29
104	30 maggio 2022	08:22:22	44.389	8.945	21.59	37.858	96.1	8.0	504.72	1.65
105	30 maggio 2022	08:25:12	44.392	8.944	21.45	37.884	95.7	8.1	506.08	1.30
102	30 maggio 2022	08:28:43	44.392	8.941	21.01	37.961	97.4	8.1	503.52	1.31
19	30 maggio 2022	08:33:32	44.392	8.932	20.48	37.995	96.2	8.0	504.95	1.59

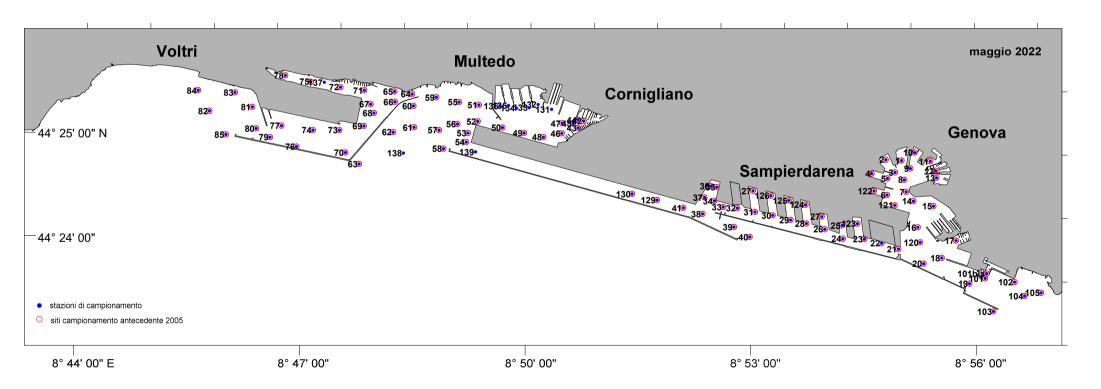
	gio 2022 08:36:1	7 44.395	9 022	00.04	0= 0.44	00.0			
0.4		44.000	8.922	20.61	37.941	93.0	8.0	505.00	1.72
21 30 mag	gio 2022 08:38:0	3 44.397	8.916	20.26	37.992	97.8	8.0	503.60	1.73
22 30 mag	gio 2022 08:40:1	44.400	8.912	20.31	37.981	97.8	8.0	502.85	1.66
23 30 mag	gio 2022 08:42:0	9 44.398	8.908	20.63	37.922	92.7	8.0	500.70	1.71
123 30 mag	gio 2022 08:43:3	6 44.402	8.907	20.58	37.586	92.4	8.0	499.24	2.44
25 30 mag	gio 2022 08:45:1	9 44.400	8.903	21.00	37.908	91.0	8.1	500.06	1.79
24 30 mag	gio 2022 08:46:4	4 44.399	8.904	20.98	37.910	91.9	8.1	500.13	3.49
26 30 mag	gio 2022 08:48:0	3 44.400	8.900	21.11	37.986	91.6	8.1	500.56	1.75
27 30 mag	gio 2022 08:49:1	3 44.402	8.899	21.12	37.982	91.2	8.1	500.50	2.00
28 30 mag	gio 2022 08:51:3	3 44.401	8.896	20.98	37.948	88.7	8.1	500.06	2.77
124 30 mag	gio 2022 08:52:4	1 44.405	8.895	21.06	37.932	91.2	8.1	498.67	3.18
29 30 mag	gio 2022 08:54:5	9 44.402	8.892	21.06	37.933	90.7	8.1	498.67	2.19
125 30 mag	gio 2022 08:55:2	44.405	8.892	21.25	37.738	92.3	8.1	498.17	3.57
30 30 mag	gio 2022 08:57:2	2 44.402	8.888	21.25	37.906	91.0	8.2	498.17	2.88
126 30 mag	gio 2022 08:59:1	2 44.405	8.888	21.25	37.754	92.0	8.1	498.17	3.36
31 30 mag	gio 2022 09:01:3	2 44.403	8.884	21.25	37.891	91.5	8.1	498.17	3.09
127 30 mag	gio 2022 09:03:0	7 44.406	8.884	20.89	37.821	92.4	8.0	496.97	2.59
32 30 mag	gio 2022 09:05:0	1 44.404	8.880	20.52	37.887	92.9	8.0	495.77	1.83
33 30 mag	gio 2022 09:07:2	1 44.403	8.877	20.68	37.885	92.2	8.0	499.95	1.83
34 30 mag	gio 2022 09:09:5	3 44.405	8.875	19.69	37.838	95.7	8.0	482.93	1.62
35 30 mag	gio 2022 09:12:5	3 44.408	8.876	20.31	37.913	94.6	8.0	499.78	1.69
36 30 mag	gio 2022 09:13:1	3 44.407	8.875	20.51	37.843	92.5	8.0	499.86	1.60
37 30 mag	gio 2022 09:14:5	3 44.405	8.873	20.71	37.809	90.3	8.1	499.93	1.52
38 30 mag	gio 2022 09:16:0	7 44.402	8.873	20.51	37.774	93.8	7.8	496.40	1.66
39 30 mag	gio 2022 09:18:1	44.401	8.879	20.42	36.712	91.0	8.0	498.17	1.37
40 30 mag	gio 2022 09:20:0	7 44.399	8.883	21.35	37.594	90.9	8.0	498.67	1.48
41 30 mag	gio 2022 09:22:5	1 44.403	8.869	20.21	36.425	88.7	8.0	464.75	1.91
129 30 mag	gio 2022 09:24:0	7 44.405	8.866	19.82	37.873	95.1	8.0	486.52	1.68
130 30 mag	gio 2022 09:26:0	2 44.406	8.862	21.25	38.025	90.9	8.1	500.75	2.79

Tab. 2 - area di campionamento Multedo – Prà - Voltri

			Latitudine	Longitudine	Temperatura	Salinità	Ossigeno disciolto		Red-Ox	Torbidità
Stazione	Data	Ora	N	Ē	(°C)	(PSU)	(%)	рН	(mV)	(NTU)
139	30 maggio 2022	09:37:39	44.413	8.824	21.10	37.727	97.0	8.1	494.25	1.52
54	30 maggio 2022	09:42:13	44.413	8.820	21.18	37.739	97.5	8.1	493.90	1.51
58	30 maggio 2022	09:45:10	44.413	8.815	21.18	37.806	97.5	8.1	494.07	1.43
138	30 maggio 2022	09:50:52	44.412	8.807	21.29	37.715	97.7	8.1	493.80	1.46
63	30 maggio 2022	09:56:07	44.411	8.799	21.42	37.722	99.5	8.1	491.05	1.56
62	30 maggio 2022	10:04:00	44.415	8.805	21.33	37.737	97.9	8.1	488.00	1.52
61	30 maggio 2022	10:06:02	44.416	8.809	21.33	37.742	98.0	8.1	487.80	1.52
57	30 maggio 2022	10:12:02	44.415	8.816	22.07	37.488	98.4	8.0	482.28	1.97
56	30 maggio 2022	10:15:20	44.417	8.819	22.08	36.961	94.6	8.1	478.77	2.17
53	30 maggio 2022	10:18:25	44.414	8.820	22.10	37.042	95.3	8.1	480.85	2.13
52	30 maggio 2022	10:21:39	44.417	8.823	22.12	37.066	94.8	8.1	476.27	2.06
50	30 maggio 2022	10:23:58	44.416	8.828	22.16	37.350	95.8	8.0	476.78	1.96
49	30 maggio 2022	10:25:57	44.415	8.832	21.96	37.744	100.8	8.1	479.58	1.70
48	30 maggio 2022	10:27:58	44.415	8.837	21.36	38.091	101.1	8.0	506.60	1.36
46	30 maggio 2022	10:29:38	44.415	8.840	22.02	37.702	100.0	8.0	481.65	1.70
47	30 maggio 2022	10:31:42	44.416	8.839	22.01	37.711	100.4	8.1	480.83	1.74
45	30 maggio 2022	10:33:59	44.416	8.843	21.43	38.108	100.3	8.0	506.48	1.42
44	30 maggio 2022	10:35:22	44.417	8.844	21.38	38.109	97.2	8.0	503.83	1.46
43	30 maggio 2022	10:37:32	44.417	8.845	21.38	38.120	97.7	8.0	503.71	1.38
42	30 maggio 2022	10:39:53	44.417	8.846	21.38	38.123	98.1	8.0	503.52	1.41
131	30 maggio 2022	10:41:58	44.420	8.839	21.62	37.293	97.9	8.0	502.51	1.38
132	30 maggio 2022	10:43:07	44.422	8.836	21.12	38.007	100.0	8.0	504.15	2.08
133	30 maggio 2022	10:45:02	44.421	8.834	21.17	37.972	100.9	8.0	504.40	2.27
134	30 maggio 2022	10:47:13	44.421	8.832	21.01	37.918	102.4	8.0	501.19	2.14
135	30 maggio 2022	10:49:07	44.421	8.830	20.96	37.901	99.9	8.0	501.88	2.00
136	30 maggio 2022	10:51:02	44.421	8.828	20.96	37.913	100.1	8.0	501.69	2.02
51	30 maggio 2022	10:53:20	44.419	8.825	20.85	37.858	98.8	8.1	501.69	1.98
55	30 maggio 2022	10:55:39	44.420	8.820	21.71	37.906	99.5	8.0	505.97	1.63

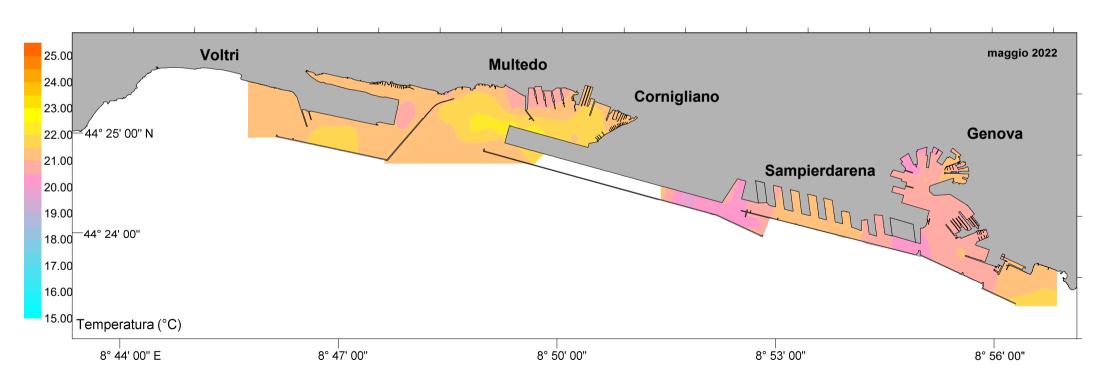
								1		
59	30 maggio 2022	10:57:57	44.421	8.815	21.71	38.232	100.3	8.0	506.10	1.61
60	30 maggio 2022	10:59:59	44.419	8.810	22.02	37.541	98.2	8.0	484.13	1.95
64	30 maggio 2022	11:01:19	44.421	8.809	20.87	37.834	99.5	8.0	501.00	2.11
65	30 maggio 2022	11:03:53	44.421	8.805	21.12	37.977	100.6	8.0	503.20	1.68
71	30 maggio 2022	11:05:24	44.421	8.799	21.12	37.993	99.5	8.2	504.08	1.44
72	30 maggio 2022	11:07:41	44.422	8.795	21.12	37.995	100.4	8.2	503.77	1.37
75	30 maggio 2022	11:08:56	44.423	8.789	21.09	37.996	101.6	8.1	502.64	1.28
78	30 maggio 2022	11:11:11	44.423	8.782	21.08	38.006	102.2	8.1	502.32	1.42
137	30 maggio 2022	11:11:24	44.424	8.786	21.09	38.000	101.9	8.1	502.51	1.52
67	30 maggio 2022	11:16:32	44.418	8.800	20.93	37.691	102.6	8.1	501.57	1.67
68	30 maggio 2022	11:18:09	44.417	8.801	20.93	37.687	102.5	8.1	501.50	1.61
69	30 maggio 2022	11:20:07	44.416	8.799	20.95	37.674	102.3	8.1	501.38	1.49
73	30 maggio 2022	11:22:41	44.415	8.794	21.35	38.071	102.3	8.2	499.74	1.26
74	30 maggio 2022	11:24:11	44.415	8.790	21.54	38.122	103.7	8.0	500.43	1.34
77	30 maggio 2022	11:28:21	44.416	8.784	21.51	38.094	103.9	8.0	500.68	1.08
79	30 maggio 2022	11:30:58	44.414	8.780	21.51	38.047	103.8	8.0	500.68	1.77
80	30 maggio 2022	11:32:07	44.415	8.778	21.41	38.063	102.8	8.1	500.06	1.44
81	30 maggio 2022	11:34:11	44.419	8.778	21.41	38.078	102.2	8.1	499.99	1.26
83	30 maggio 2022	11:36:00	44.421	8.773	21.48	38.067	103.3	8.0	501.00	1.65
84	30 maggio 2022	11:38:39	44.418	8.770	21.51	38.099	103.3	8.0	500.68	1.36
82	30 maggio 2022	11:40:22	44.417	8.775	21.44	38.071	103.1	8.0	500.87	1.56
85	30 maggio 2022	11:43:07	44.415	8.773	21.44	38.087	102.9	7.9	501.31	1.52
76	30 maggio 2022	11:49:07	44.413	8.786	21.54	38.105	103.6	8.0	500.37	1.28
70	30 maggio 2022	11:53:20	44.413	8.797	21.35	38.066	101.5	8.2	499.80	1.28
66	30 maggio 2022	12:02:18	44.418	8.804	21.17	37.770	95.8	8.1	484.42	1.46

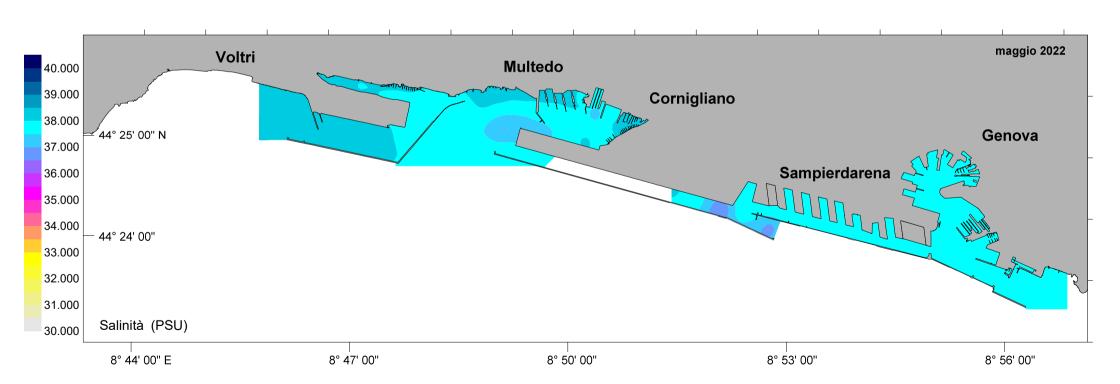
Tab. 3 - area di campionamento foce Bisagno - foce Polcevera

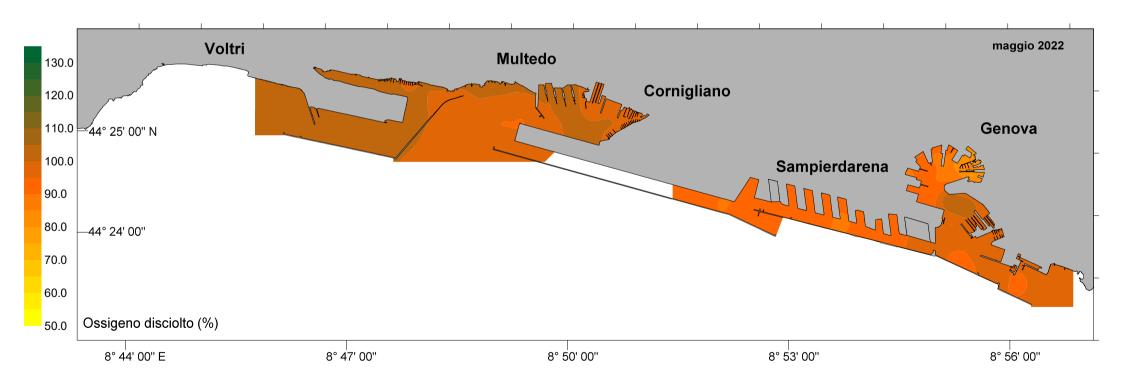

Stazione	Data	Ora	Latitudine N	Longitudine E	Coliformi fecali (UFC/100 ml)	Ammoniaca (mg/l)	Clorofilla a (µg/L)
8	30 maggio 2022	07:24:19	44.409	8.918	272	0.10	0.52
10	30 maggio 2022	07:40:36	44.413	8.920	5794	0.21	0.44
16	30 maggio 2022	08:02:38	44.400	8.920	132	0.08	0.54
101bis	30 maggio 2022	08:16:48	44.389	8.939	31	<0.05	0.48
104	30 maggio 2022	08:22:22	44.389	8.945	<10	<0.05	0.13
19	30 maggio 2022	08:33:32	44.392	8.932	31	<0.05	0.24
21	30 maggio 2022	08:38:08	44.397	8.916	121	<0.05	0.66
34	30 maggio 2022	09:09:53	44.405	8.875	173	<0.05	0.80
38	30 maggio 2022	09:16:07	44.402	8.873	158	<0.05	0.69
40	30 maggio 2022	09:20:07	44.399	8.883	627	<0.05	0.27

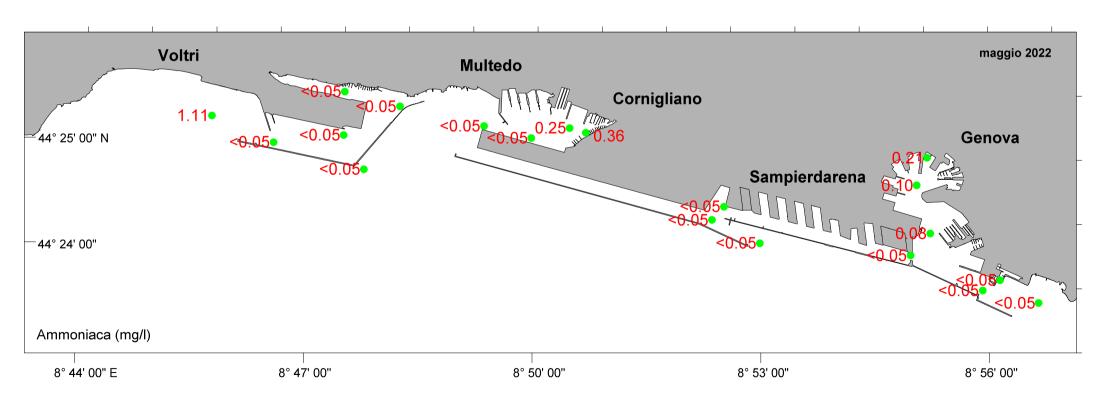
Tab. 4 - area di campionamento Multedo - Prà - Voltri

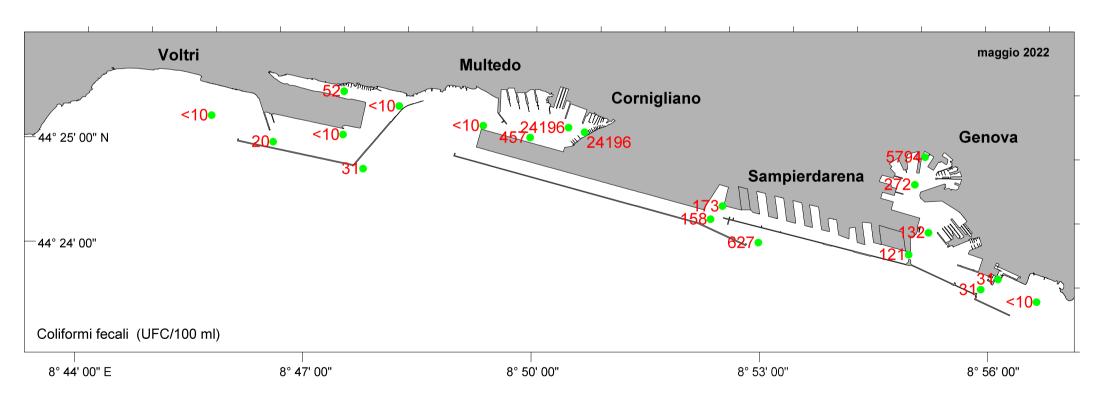
Cto-iono	Dete	0	L atitudina N	Langitudina F	Coliformi fecali	Ammonioso (mall)	Clarafilla a (vall)
Stazione	Data	Ora	Latitudine N	Longitudine E	(UFC/100 ml)	Ammoniaca (mg/l)	Clorofilla a (µg/L)
63	30 maggio 2022	09:56:07	44.411	8.799	31	< 0.05	0.70
52	30 maggio 2022	10:21:39	44.417	8.823	<10	<0.05	0.89
49	30 maggio 2022	10:25:57	44.415	8.832	457	<0.05	0.63
47	30 maggio 2022	10:31:42	44.416	8.839	24196	0.25	1.13
43	30 maggio 2022	10:37:32	44.417	8.845	24196	0.36	1.42
72	30 maggio 2022	11:07:41	44.422	8.795	52	<0.05	0.46
73	30 maggio 2022	11:22:41	44.415	8.794	<10	<0.05	0.42
79	30 maggio 2022	11:30:58	44.414	8.780	20	<0.05	0.29
82	30 maggio 2022	11:40:22	44.417	8.775	<10	1.11	0.21
66	30 maggio 2022	12:02:18	44.418	8.804	<10	<0.05	0.35

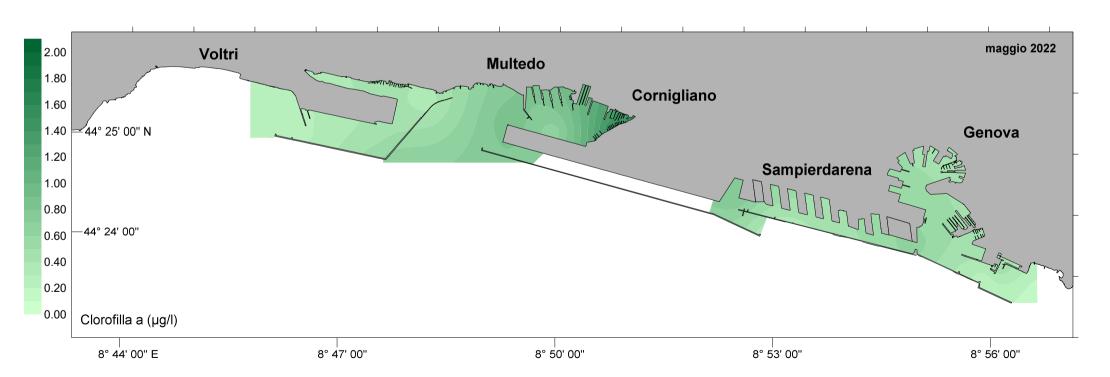


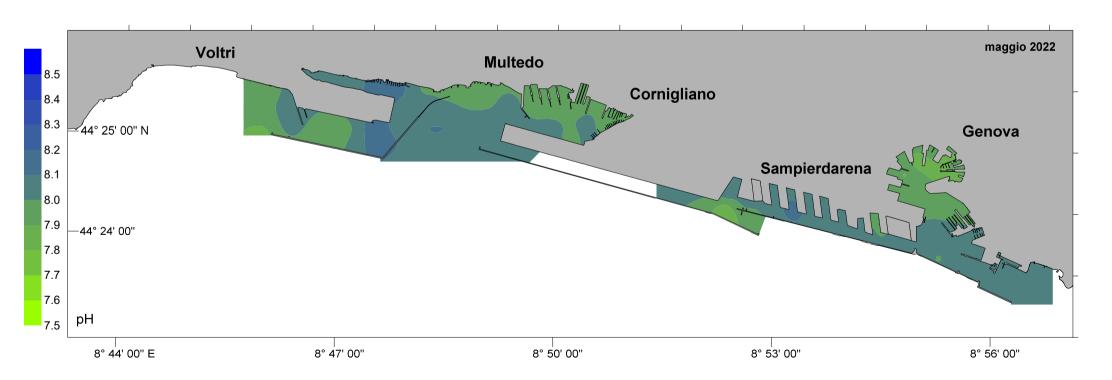


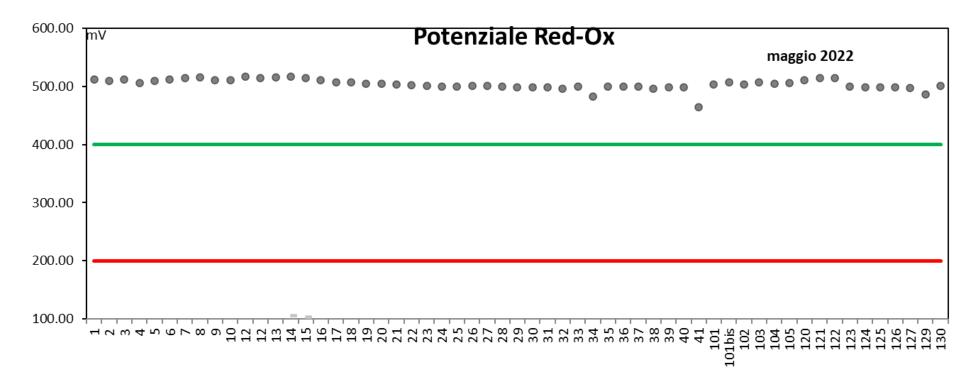












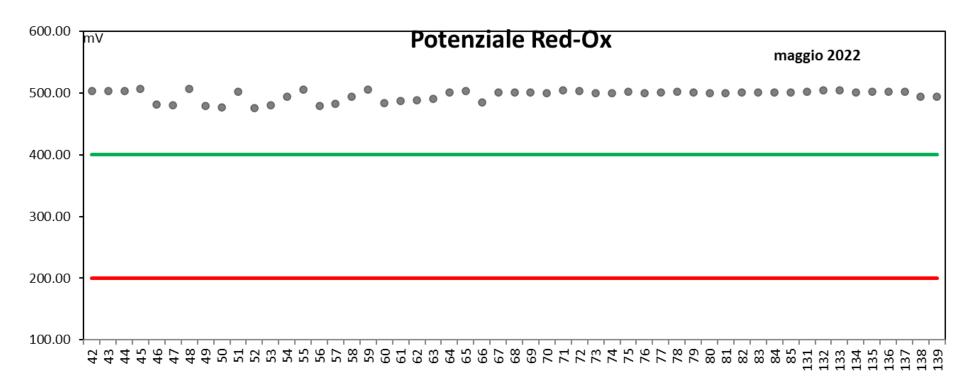

allegato 9

Grafico 1- area di campionamento foce Bisagno - foce Polcevera

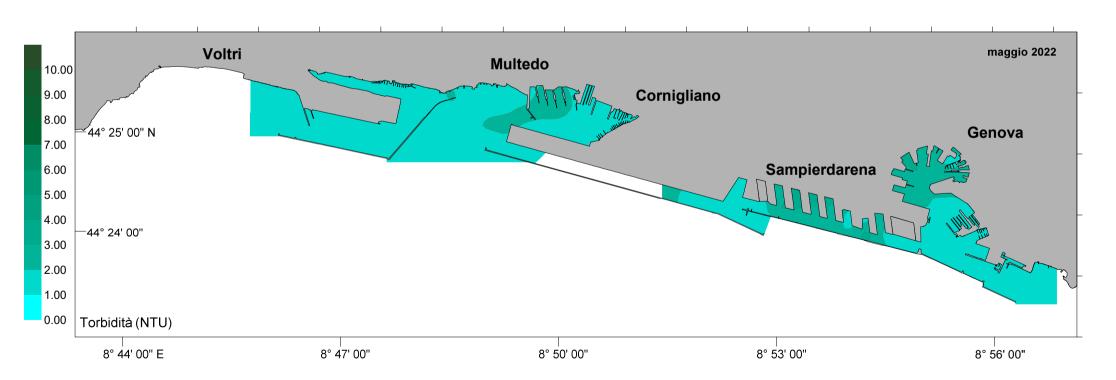

allegato 9

Grafico 2-area di campionamento Multedo - Prà - Voltri

M3C SRL

Sede legale: Via dei Reggio 15/9 16155 Genova Unità operativa: Via G. G. Longo 25R 16155 Genova Tel: 010 8567337 Cell: 375 6314130 Email: info@m3csrl.it P.IVA/C.F.: 02436250993 - Cap. Soc. 10.000 i.v. REA: GE-486210

CERTIFICATO DI ANALISI N. 456A/2022

Committente l'analisi: SERVIZI ECOLOGICI PORTUALI GENOVA

Molo Giano snc - Genova

Data emissione: 04/07/22 Matrice campione: Solido

Denominazione campione: Sedimenti

Data prelievo: 30/05/22

Luogo di prelievo: Campionamento con benna di profondità da 5 kg nel

tratto di mare aperto compreso tra Ponte Caracciolo e Ponte Assereto, Punto di campionamento n.122, ad una

profondità di circa 15 m.

Modalità di campionamento: Istantaneo

Campionamento a cura di: Personale della Ditta Committente

Conservazione del

campione

Il campione è stato prelevato in sacchetto trasparente in HDPE, è stato conservato refrigerato ed è stato suddiviso in aliquote e consegnato ai laboratori chimico e geologico

per le analisi.

Risultati dell'analisi: Analisi su tal quale:

Parametro	U.M.	Risultato (*)	Valori limite ^(*)	Metodo
Residuo 105°C	%	76,4	-	UNI EN 14346-1 2007 met A
Arsenico	mg/Kg	9,52	12	EPA 3051A2007 + EPA 6010D2018
Cadmio	mg/Kg	0,270	0,3	UNI EN 16174-2012 + UNI EN 16171-2016
Cromo totale	mg/Kg	57,1	1	EPA 3051A2007 + EPA 6010D2018
Cromo VI	mg/Kg	< 0,1	0,1	CNR IRSA 16 Q 64 Vol 3 1986
Rame	mg/Kg	31,9	40	EPA 3051A2007 + EPA 6010D2018
Mercurio	mg/Kg	0,94	0,3	UNI EN 16174-2012 + UNI EN 16171-2016
Nichel	mg/Kg	42,8	30	EPA 3051A2007 + EPA 6010D2018
Piombo	mg/Kg	38,3	30	EPA 3051A2007 + EPA 6010D2018
Zinco	mg/Kg	114	100	EPA 3051A2007 + EPA 6010D2018
Vanadio	mg/Kg	15,8	-	EPA 3051A2007 + EPA 6010D2018
Alluminio	mg/Kg	10300	-	EPA 3051A2007 + EPA 6010D2018
Ferro	mg/Kg	18900	-	EPA 3051A2007 + EPA 6010D2018
Idrocarburi C>12	mg/Kg	98,6	-	EPA 3550 C 2007 + EPA 8015 C 2007
Acenaftilene	μg/Kg	8	-	EPA 3545 A 2007 + EPA 8270 E 2018
Benzo(a)antracene	μg/Kg	160	75	EPA 3545 A 2007 + EPA 8270 E 2018
Fluorantene	μg/Kg	200	110	EPA 3545 A 2007 + EPA 8270 E 2018
Naftalene	μg/Kg	24	35	EPA 3545 A 2007 + EPA 8270 E 2018

M3C SRL

Sede legale: Via dei Reggio 15/9 16155 Genova Unità operativa: Via G. G. Longo 25R 16155 Genova Tel: 010 8567337 Cell: 375 6314130 Email: info@m3csrl.it P.IVA/C.F.: 02436250993 - Cap. Soc. 10.000 i.v. REA: GE-486210

Parametro	U.M.	Risultato	Valori limite ^(*)	Metodo
Antracene	μg/Kg	34	24	EPA 3545 A 2007 + EPA 8270 E 2018
Benzo(a)pirene	μg/Kg	150	30	EPA 3545 A 2007 + EPA 8270 E 2018
Benzo(b)fluorantene	μg/Kg	180	40	EPA 3545 A 2007 + EPA 8270 E 2018
Benzo(k)fluorantene	μg/Kg	58	20	EPA 3545 A 2007 + EPA 8270 E 2018
Benzo(g,h,i)perilene	μg/Kg	98	55	EPA 3545 A 2007 + EPA 8270 E 2018
Acenaftene	μg/Kg	10	-	EPA 3545 A 2007 + EPA 8270 E 2018
Fluorene	μg/Kg	20	21	EPA 3545 A 2007 + EPA 8270 E 2018
Fenantrene	μg/Kg	97	87	EPA 3545 A 2007 + EPA 8270 E 2018
Pirene	μg/Kg	200	153	EPA 3545 A 2007 + EPA 8270 E 2018
Dibenzo(a,h)antracene	μg/Kg	24	-	EPA 3545 A 2007 + EPA 8270 E 2018
Crisene	μg/Kg	120	108	EPA 3545 A 2007 + EPA 8270 E 2018
Indeno(1,2,3-c,d)pirene	μg/Kg	120	-	EPA 3545 A 2007 + EPA 8270 E 2018
Sommatoria Idrocarburi Policiclici Aromatici	μg/Kg	1500	900	EPA 3545 A 2007 + EPA 8270 E 2018
Aldrin	μg/Kg	< 0,1	0,2	EPA 3545 A 2007 + EPA 8270 E 2018
Dieltrin	μg/Kg	< 0,1	0,7	EPA 3545 A 2007 + EPA 8270 E 2018
Endrin	μg/Kg	< 0,1	2,7	EPA 3545 A 2007 + EPA 8270 E 2018
BHC (alfa)	μg/Kg	< 0,1	0,2	EPA 3545 A 2007 + EPA 8270 E 2018
BHC (beta)	μg/Kg	< 0,1	0,2	EPA 3545 A 2007 + EPA 8270 E 2018
BHC (gamma)(Lindano)	μg/Kg	< 0,1	0,2	EPA 3545 A 2007 + EPA 8270 E 2018
Clordano (cis+trans)	μg/Kg	< 0,1	2,3	EPA 3545 A 2007 + EPA 8270 E 2018
DDD o,p'	μg/Kg	1	-	EPA 3545 A 2007 + EPA 8270 E 2018
DDD p,p'	μg/Kg	1,4	-	EPA 3545 A 2007 + EPA 8270 E 2018
DDD	μg/Kg	2,4	0,8	EPA 3545 A 2007 + EPA 8270 E 2018
DDE o,p'	μg/Kg	0,94	-	EPA 3545 A 2007 + EPA 8270 E 2018
DDE p,p'	μg/Kg	0,87	-	EPA 3545 A 2007 + EPA 8270 E 2018
DDE	μg/Kg	1,8	1,8	EPA 3545 A 2007 + EPA 8270 E 2018
DDT o,p'	μg/Kg	< 0,1	-	EPA 3545 A 2007 + EPA 8270 E 2018
DDT p,p'	μg/Kg	< 0,1	-	EPA 3545 A 2007 + EPA 8270 E 2018
DDT	μg/Kg	< 0,1	1	EPA 3545 A 2007 + EPA 8270 E 2018
Esaclorobenzene	μg/Kg	< 0,1	0,4	EPA 3545 A 2007 + EPA 8270 E 2018
Eptacloro epossido	μg/Kg	< 0,1	0,6	EPA 3545 A 2007 + EPA 8270 E 2018
Dibutilstagno (come Sn)	μg/Kg	< 1	-	ICRAM Metodologie analitiche di riferimento (2001)- App. 1
Monobutilstagno (come Sn)	μg/Kg	< 1	-	ICRAM Metodologie analitiche di riferimento (2001)- App. 1
Tributilstagno (come Sn)	μg/Kg	< 1	5	ICRAM Metodologie analitiche di riferimento (2001)- App. 1
Somma Organostannici (come Sn)	μg/Kg	< 1	-	ICRAM Metodologie analitiche di riferimento (2001)- App. 1
TOC	%	0,46	-	UNI EN 15936:2012
PCB 028 + PCB 031	μg/Kg	0,47	-	EPA 3545 A 2007 + EPA 8270 E 2018

M3C SRL

Sede legale: Via dei Reggio 15/9 16155 Genova Unità operativa: Via G. G. Longo 25R 16155 Genova Tel: 010 8567337 Cell: 375 6314130 Email: info@m3csrl.it P.IVA/C.F.: 02436250993 - Cap. Soc. 10.000 i.v. REA: GE-486210

Parametro	U.M.	Risultato	Valori limite ^(*)	Metodo
PCB 052	μg/Kg	1,72	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 077	μg/Kg	< 0,1	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 081	μg/Kg	< 0,1	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 101	μg/Kg	3,26	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 118	μg/Kg	3,7	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 126	μg/Kg	< 0,1	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 128	μg/Kg	1,06	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 138	μg/Kg	5,9	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 153	μg/Kg	5,68	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 156	μg/Kg	0,68	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 169	μg/Kg	< 0,1	-	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 180	μg/Kg	2,62	-	EPA 3545 A 2007 + EPA 8270 E 2018
Sommatoria PCB	μg/Kg	24,6	8	EPA 3545 A 2007 + EPA 8270 E 2018
PCB 105	μg/Kg	1,49	-	EPA 3545 A 2007 + EPA 8270 E 2018
Sommatoria T.E.PCB Diossina simili	ng/Kg	2,69	-	EPA 3545 A 2007 + EPA 8270 E 2018
Sommatoria PCDD, PCDF (conversione TEF)	ng/Kg	1,5	-	UNI EN 16190:2019 + NATO CCMS Report n°176 1988
Sommatoria TE, PCDD, PCDF e PCB Diossina simili	ng/Kg	4,2	2	Calcolo
Spore di clostridi solfito riduttori	UFC/g	7,5x10^2	-	Rapp. ISTISAN 02/3
Enterococchi	MPN/g	1,6x10^2	-	Rapp. ISTISAN 2014/18 pag. 91 MET ISS F 003B
Salmonella spp	/50g	Presenza	-	Rapp. ISTISAN 2014/18 pag. 78 MET ISS F 002C
Coliformi fecali	MPN/g	4,7	-	CNR IRSA 3.2 G 64 Vol 1 1983+APATCNRIRSA 7020A Man 29 2003
Coliformi totali	MPN/g	6,8x10^1	-	CNR IRSA 3.1 G 64 Vol 1 1983+APATCNRIRSA 7010B Man 29 2003

^(*) Rif. RP 22LA21650 del 28/06/2022 del laboratorio accreditato LAV srl. RdP disponibile su richiesta. Valori limite di cui al D.M. 15/07/2016 n. 173 per i fanghi di dragaggio destinati ad essere ricollocati in mare: livelli chimici di riferimento L1.

Commento tecnico analisi chimiche:

L'analisi chimica del sedimento mostra la presenza in misura significativa di alcuni metalli pesanti (Cr, Ni, Pb, Zn, Hg) e di alcuni idrocarburi policiclici aromatici. La presenza di Cr e Ni potrebbe essere attribuibile a fondo naturale, mentre per quanto concerne gli altri analiti si ritiene che la loro presenza sia correlata esclusivamente all'attività antropica.

Il sedimento presenta un significativo livello di contaminazione batterica, con la presenza di Salmonella, Coliformi, Enterococchi e Clostridi solfito riduttori.

Analisi Geologiche:

L'analisi della granulometria del sedimento mostra come esso sia costituito prevalentemente da sabbia (70,54%) e pelite (28,46%), infatti la maggior parte del campione ha dimensione inferiore a 0,25 mm con un diametro medio di 0,13 mm.

Riferimento RDP del laboratorio RINA in allegato n. 22073-01

Godani

Albo n. 1212

del 21/06/2022.

RAPPORTO DI PROVA n. 22073-01

Verbale di accettazione N. 22073 del 01/06/2022

Data di emissione: 21/06/2022

Cliente: M3C Srl

Cantiere: Porto di Genova - Punto 122

Il rapporto contiene 3 pagine, inclusa la presente

Genova, 21/06/2022

Paolo Brasey (Direttore del laboratorio)

a RINA company

RINA Consulting - GET S.r.l.

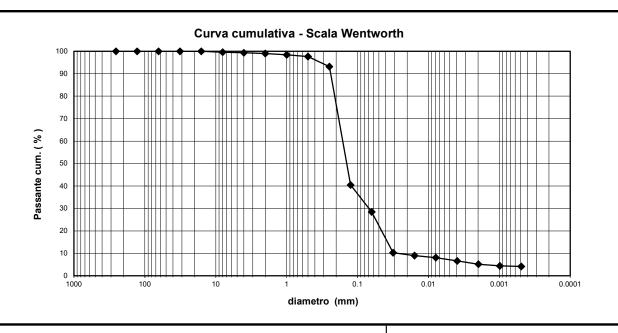
Società soggetta a direzione e coordinamento amministrativo e finanziario del socio unico RINA Consulting S.p.A.

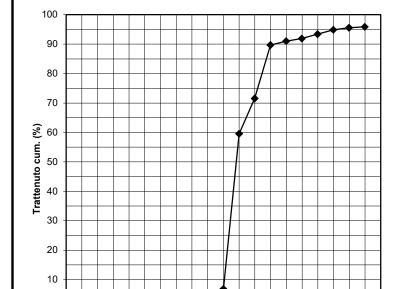
Via Albisola, 64-66 - 16162 Genova

 $Tel.\ +39\ 010\ 6506644\ -\ Fax\ +39\ 010\ 6591896\ -\ www.rinaconsulting.org\ -\ rinaconsulting@rina.org$

C.F. / P. IVA 01650450990 - REA GE 425381 - Cap. Soc. € 25.000,00 i.v.

Sede legale: Via A. Cecchi, 6 - 16129 Genova (GE)




ANALISI GRANULOMETRICA SERIE WENTWORTH ASTM D422-63, PROTOCOLLO ARPAL CRITERI RIPASCIMENTO, L.R. 13-1999

Vagliatura eseguita per via umida - scala di Wentworth

Cliente : M3C S.r.l.
Località : Porto di Genova
Id. Campione : Campione 1 - Punto 122
Descrizione : sabbia fine pelitica

Campione 1 - Punto 122 Data Ricevimento : 01/06/2022 sabbia fine pelitica Data Prova : 09/06/2022

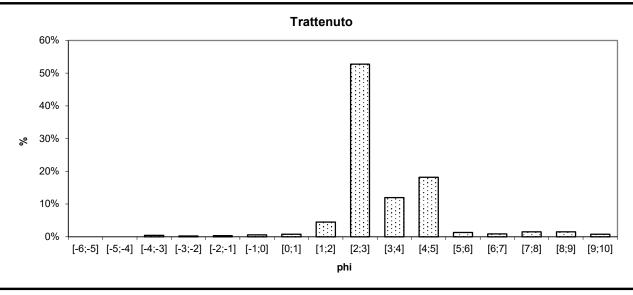
Curva cumulativa - scala in phi

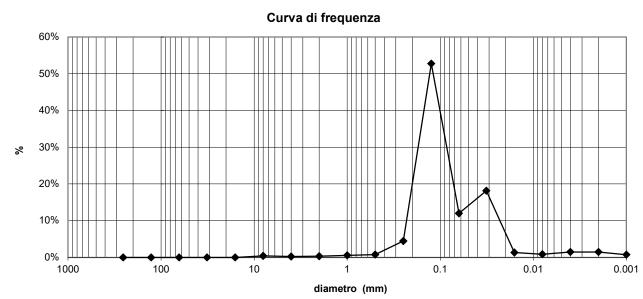
Parametri Granulometrici								
% ciottoli	% ghiaia	% sabbia	% pelite					
0.65	0.35	70.54	28.46					

Tabella diametri setacci - passanti in %							
Diametro setacci (mm)	Passanti cumulativi %						
128	100.00						
64	100.00						
32	100.00						
16	100.00						
8	99.59						
4	99.35						
2	99.00						
1	98.44						
0.5	97.65						
0.25	93.17						
0.125	40.44						
0.063	28.46						
0.032	10.30						
0.016	8.98						
0.008	8.10						
0.004	6.62						
0.002	5.15						
0.001	4.42						
0.0005	4.12						

Direttore Tecnico : Dott. Geol. Paolo Brasey Sperimentatore : Dott. Francesco Sanginesi

2 3 4 5 6 7 8 9 10 11 12


-8 -7 -6 -5 -4 -3 -2 -1 0



Cliente : M3C S.r.l.
Località : Porto di Genova

Id. Campione :Campione 1 - Punto 122Data Ricevimento : 01/06/2022Descrizione :sabbia fine peliticaData Prova : 09/06/2022

DIAMETRO MEDIO (di Folk & Ward) in phi:	3.16
DIAM. MEDIO (di Folk & Ward) in mm:	0.13
CLASSAZIONE (di Folk & Ward):	1.77

DISPERSIONE (di Folk & Ward): 1.23 SKEWNESS (di Folk & Ward): 0.58

Parametri organolettici

Colore: bruno
Odore: assente
Concrezioni: assenti
Conchiglie: assenti

Direttore Tecnico: Dott. Geol. Paolo Brasey Sperimentatore: Dott. Francesco Sanginesi

Parametri granulometrici